Flexible Split-Ring Electrode for Insect Flight Biasing Using Multisite Neural Stimulation Citation

نویسندگان

  • Wei Mong Tsang
  • Zane N. Aldworth
  • John G. Hildebrand
  • Tom L. Daniel
  • Akintunde Ibitayo Akinwande
چکیده

We describe a flexible multisite microelectrode for insect flight biasing using neural stimulation. The electrode is made of two layers of polyimide (PI) with gold sandwiched in between in a split-ring geometry. The split-ring design in conjunction with the flexibility of the PI allows for a simple insertion process and provides good attachment between the electrode and ventral nerve cord of the insect. Stimulation sites are located at the ends of protruding tips that are circularly distributed inside the split-ring structure. These protruding tips penetrate into the connective tissue surrounding the nerve cord. We have been able to insert the electrode into pupae of the giant sphinx moth Manduca sexta as early as seven days before the adult moth emerges, and we are able to use the multisite electrode to deliver electrical stimuli that evoke multidirectional, graded abdominal motions in both pupae and adult moths. Finally, in loosely tethered flight, we have used stimulation through the flexible microelectrodes to alter the abdominal angle, thus causing the flying moth to deviate to the left or right of its intended path.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insect-machine interface: a carbon nanotube-enhanced flexible neural probe.

We developed microfabricated flexible neural probes (FNPs) to provide a bi-directional electrical link to the moth Manduca sexta. These FNPs can deliver electrical stimuli to, and capture neural activity from, the insect's central nervous system. They are comprised of two layers of polyimide with gold sandwiched in between in a split-ring geometry that incorporates the bi-cylindrical anatomical...

متن کامل

Mapping of Small Nerve Trunks and Branches Using Adaptive Flexible Electrodes

Selective stimulation is delivered to the sciatic nerve using different paris of contacts on a split-ring electrode, while simulatneous recordings are acquired by the neural ribbon electrodes on three different branches. Two hook electrodes are also implanted in the muscle to monitor the activated muscle responses. It shows that the high precision implantation of electrodes, increases the effic...

متن کامل

Flexible Electrode Array for Retinal Stimulation

In this Work, ITO/PET (Indium Tin Oxide / Polyethylene Terephthalate) electrode structure which provides biocompatibility, mechanical stability and flexibility is fabricated. Flexible ITO/PET implantable electrode array for a retina has been developed. The electrode array is fabricated on a thin PET/ITO substrate and is encapsulated using, SU-8, an insulating material. PET substrate and SU-8 po...

متن کامل

Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted in...

متن کامل

A Polyimide Based Split-Ring Neural Interface Electrode for Neural Signal Recording

We have developed a polyimide based neural interface electrode to record nerve signals from the sciatic nerve of a rat. The neural interface electrode has a split-ring shape, with four protruding gold electrodes for recording, and two reference gold electrodes around the split-ring. The split-ring electrode can be opened up to encircle the sciatic nerve. The four electrodes can be bent to sit o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010